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Statistical Properties of a Two-Stage Model

of Carcinogenesis
by Christopher J. Portier*

Some of the statistical properties of a simple two-stage model of carcinogenesis are explored. The
implications of additive treatment effects versus independent treatment effects on the shape of the dose-
response curve are considered. Response that is low-dose linear results in the cases where the mutation
rates are affected by dose or in the cases where treatment changes the birth rate/death rate of initiated
cells in an additive fashion. Independent treatment effects lead to non-low-dose linear response when the
survival of initiated cells is affected by treatment. A computer simulation experiment was performed that
examined the ability of animal carcinogenesis data to differentiate hetween various forms of this simple
two-stage model. It is shown that animal carcinogenicity experiments do not contain encugh data to
adequately describe the difference between these two types of effects.

Introduction

Dose-response models have been used for many years
in the quantitative analysis of animal carcinogenesis
data. A review of some of the earliest models is given
by Krewski and Brown (7). Recent developments in the
areas of cell biology, biochemistry, molecular biology,
etc., have led to more complicated mechanistic models
of carcinogenesis. These mechanistic models have sev-
eral advantages aver simpler probability models or tol-
erance distribution models. As these models utilize
knowledge of the carcinogenic process, they aid in devel-
oping improved testing procedures and in explaining a
broad range of experimental outeomes. Also, these
models generally utilize parameters that have some
type of mechanistic interpretation (e.g., mutation rates)
and information on these parameters may be available
from experiments other than the usual long-term chron-
ic bioassay. These models also have their limitations.
Many of these mechanistic parameters are difficult to
obtain, requiring specialized biochemical procedures
that must be developed for each compound. When infor-
mation from experiments other than the typical carcin-
ogenicity experiment is available, the inclusion of this
information into the risk estimation process is difficult,
requiring assumptions that may have questionable bio-
logical applicability.

One mechanistic model of carcinogenesis is the mul-
tistage model (2—4). The original form of this model has
been modified to encompass changes in our understand-
ing of the carcinogenic process (3,5,6). An excellent
review of the mathematical development of the multis-
tage model of carcinogenesis is given by Whittemore
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and Keller (4). In what follows, a very simple two-stage
model of carcinogenesis is studied. Two issues will be
discussed: the shape of dose-respomse curves derived
from this simple two-stage model and the ability of ani-
mal carcinogenicity data to differentiate between the
different shapes.

Clonal Two-Stage Model

The evidence that carcinogenesis is a multistage pro-
cess Is derived from several sources (2,5,7-9). A simple
description of this proeess is given by the following clon-
al two-stage model. It is believed that in many cases,
the first stage of the carcinogenic process is a mutation
{10-12). This collection of mutated or initiated cells are
allowed to clonally expand by incorporating birth rates
and death rates for these cells. Finally, this two-stage
model requires a second mutation to transform these
initiated cells into malignant cells.

Figure 1 illustrates the compartments of this model
and displays the notation we will use for the rates dis-
cussed above. The birth and death rates for normal cells
are denoted by By and §,, respectively. Let p, denote
the mutation rate of normal cells into initiated cells. The
parameters B, and 8, represent the birth rate and death
rate of initiated cells. Finally, let 2 denote the mutation
rate of initiated cells into malignant cells. The model
assumes all six of these rates are constant with respect
to time. For mathematical simplieity, it is also assumed
that B, = 8;, which is consistent with the assumption
that the number of normal cells is constant over time
and is not affected by treatment level. It should be noted
that normal cells still die and divide. The implications
of varying the size of the population of normal cells will
be discussed in the last section of this paper.
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Ficure 1. A simple clonal two-stage model,

Let X denote the equilibrium number of normal cells
in the tissue being studied, and let Z(t;d) denote the
number of malignant cells at time £ in animals receiving
dose d of the compound being studied. In general, there
is a latency period or progression stage from the birth
of a malignant cell until tumor detection. This progres-
sion could itself be a stochastic or deterministic process,
possibly related to treatment. For the arguments pre-
sented below, it is only necessary that the progression
stage be independent of treatment. Sinee it is unlikely
that various reasonable choices for the form of this pro-
gression would have a serious impact on the results, we
have chosen the simplest progression model, rapid de-
velopment of a tumor. If treatment affects the time from
malighant cell formation to tumor detection, results
other than those presented here could result.

With these assumptions, our ohjective is to model the
probability of at least one malignant cell as a funetion
of both time and dose. For untreated animals, this is
given by Moolgavkar (13) as:

PriZi,h=1]=

explB, — 3] — 1 — (B, - al)z] 1
(B, — 87

The three parameters o, pq, ahd X enter into the
model (Eq. 1} as a produet which will be denoted by w,.
It is possible that p, could be increased and p, decreased
in such a way that the probability expressed by Equa-
tion 1 would not change. In mathematical terminology,
this means that the parameters ., p,, and X are non-
identifiable from a single experiment. The only identi-
fiable quantity is their product. Thus, from an animal
carcinogenicity experiment, we could estimate wg, but
we could not separate this estimate into ita component
parts g, pq, and X without further information ob-
tained from other sources. Similarly, v, = By — 8, i3
identifiable, but B, and &, are not. Thus, when fitting
animal carcinogenicity data to this model, we can only
estimate the two parameters o, and vy, and must use

1- exp[ — Mol X

additional data to estimate the full set of five parame-
ters. This presents two additional problems which must
be considered when interpreting the results. In many
cases, parameters derived from other sources are hased
upon an educated guess. Second, when one uses infor-
mation from multiple experiments, care must be taken
to include the uncertainty of this information into the
model.

Incorporating Dose Effects

Risk assessment is a problem of assessing treatment
effects. There are numerous ways in which dose can
enter into a model of this type. The simplest way of
incorporating dose into this model is to assume a pro-
portional effect of dose on the two parameters v, and
wg in either an independent or an additive manner.

In this situation, the term additive is used to indicate
that treatment augments an ongoing process. Thus, if
treatment induced a proportional increase in either of
the two mutation rates in this model, the single param-
eter w,, which will be referred to as the mutation rate,
would be expressed using two parameters in the form
wo + o,d where d represents the treatment level. Sim-
ilarly, if treatment caused a proportional change in
either the birth rate or the death rate of initiated cells,
the model would be modified to include the form
Yo + vid. Note that it is not possible to determine
whether {reatment affects the first mutation or the see-
ond when the exposure is over the entire lifetime of the
animal. Similarly, if treatment affects the rate of birth
and/or death of initiated cells, it is not possible to de-
termine whether that effect is on the birth rate, the
death rate or both. This additive clonal two-stage model
is given by:

PriZ(t,d)=1]=1—exp

_ explyo + vid)t — 1 = (yp + v d)]
[ (wo + wd) o :| (2D)

To simplify the notation
S[t‘drwﬂﬂwI!TO’VI] =1- P?’[Z(t,d)?'— 1]

Figure 2 illustrates the behavior of this model as a
function of both dose and time. The parameter values
for this example are w;=8.55X 1077, w; = 3w,,
vo = 0.041, and v, = 0. These parameters were derived
from fitting this clonal two-stage model to the historieal
control data for female Fischer 344 rats (14). Since
v, = 0, Figure 2 illustrates a situation in which the
treatment only affects the mutation rates. In terminol-
ogy used by several authors (13,15,16), agents that act
in this manner would be labeled as “initiators.” Figure
3 illustrates the dose-response curve for this model after
2 years of exposure. Similarly, letting w, =0 and
v1 = vo/2, the dose-response curve at 2 years is altered
as shown in Figure 4. An agent that acts in this manner
has been referred to as a “promoter.” The major dif-
ference between Figure 3 and Figure 4 is in the degree
of curvature of the dose-response relationship; Figure
3 more closely agrees with a linear function than does
Figure 4.

later, define
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FicuRE 2. Time and dose response for an initiator.

0.20 -

Pr [Tumor]

00 05 0
Dose

FIGURE 3. Dose response at 104 weeks for an initiator using an addi-
tive treatment effect,

A major concern in carcinogenic risk assessment is
whether or not a model is low-dose linear. This term is
somewhat misused because it is quite easy to show that
any continuous function can be approximated by a linear
funetion in a specified small range. What is meant by
low-dose linear is that the slope of the dose-response
curve at d = 0 is greater than zero. If the slope of the
dose-response curve is greater than zero at d =10, a
small increase in dose will result in a proportional
increase in risk. On the other hand, if the slope of the
dose-response curve at d =0 is zero, then a small
increase in dose will result in virtually no change in risk,
For this reason, dose-response models that are low-dose
linear generally estimate smaller acceptable exposures
than models which are not low-dose linear.
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FI1GURE 4. Dose response at 104 weeks for a promoter using an addi-
tive treatment effect.

Both of the models shown in Figures 3 and 4 are low-
dose linear. In faet, it is easy to show that if spontaneous
tumors exist, the model given in Equation 2 will be low-
dose linear. Thus, additive treatment effects that are
proportional to dose will result in low-dose linear
models.

Independent treatment effects refer to the situation
in which treatment results in an entirely new carcino-
genic mechanism or modifies a process that protects
against carcinogenesis. Examples of independent
effects would include the development of unusual muta-
tions, certain types of cytotoxicity, and increased sur-
vival of initiated cells that usually die very rapidly. Fig-
ure 5 illustrates one situation for which independent
treatment effects might arise. In this example, there
are two paths to earcinogenesis; the top path has a pos-
itive mutation rate and a positive birth rate for initiated
cells, resulting in spontaneous tumors. The bottom path
has a low mutation rate and a high death rate for ini-
tiated cells, resulting in no spontaneous carcinogenesis.
An independent treatment effect would only affect the
bottom path in this simple example.

To encompass this model it is necessary to extend the
notation to include a second subseript. Thus, let oy,
dencte the mutation parameter in the first (top) path.
Similarly define the remaining parameters as vo1, wge,
w2, Yoz, and vy, where the second subscript denotes
the path to which the parameter applies. Note that since
treatment does not affect the top path, it is assumed
that @y; = 0 and v, = 0 and are not included in the list
above. Define P{t) = 1 — S[tid, 041,017 = 0,%01,¥11 = 0]
{the probability of at least one malignant cell via the
first path) and Py(tld) = 1 — S[td,wge,w2,Yo2, Y12] (the
probability of at least one malignant cell via the second
path). Since it is assumed that all spontaneous mutations
occur via the first path, P,;(f)>0 and that
P,(tld = 0) = 0. The probability of at least one malig-
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FIGURE 6. Dose response at 104 weeks for an initiator using an inde-
pendent treatment effect.

nant cell via either path is
Pltid) =1 — (1 - P81 — Po{tld)).
Figure 6 illustrates this model at 104 weeks usin
parameter values given by wg; = 1.15 x 107%,
Yor1 — 4.72, Wpz = 0.001, Wy = 3.0, Yoz = 4.0, and
Y1z = 0. The parameters wy and vy, are derived from
fitting the two-stage model to the historical control data

given by

{14) on the incidence of adrenal pheochromocytomas in
female Fischer 344 rats. In the terminology presented
above, this would represent an initiation effect of treat-
ment. As is obvious by this graph, this type of effect
results in a low-dose linear model. In Figure 7, w,; is
set to 0 and v, = 15, a very strong promotion effect.
It is obvious from this plot that an independent pro-
motion effect results in models which are not low-dose
linear and have a slope of zero at dose = 0.

In general, when the background tumor rate is small
or zero, treatment will affect these models in the same
manner as independent treatment effects. That is, ini-
tiators will appear to be low-dose linear and promoters
will not.

In summary, we see that in most cases, treatment
effects in this two-stage model will exhibit low-dose
linear behavior. This includes the additive treatment
effects described above and any proportional treatment
effects on the mutation rate. The only case for which
this model displayed nonlinear low-dose behavior was
for independent promotional effects.

Utility of Carcinogenesis Data for
Determining Mechanism

The results of animal earcinogenicity experiments are
used to assess the risk from exposure to environmental
agents (7). To illustrate additional problems with the
use of this model, computer simulation of animal car-
cinogenicity data can be used. The technical details con-
cerning the way in which animal carcinogenicity exper-
iments are simulated has been presented elsewhere
(18). Effectively, the procedure is as follows. First, a
design is chosen that determines the doses and the num-
ber of animals per dose. The simulations that follow use
a three-dose design with 50 animals per dose and doses
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FIGURE 7. Dose response at 104 weeks for a promoter using an inde-
pendent treatment effect.
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of 0.0, 0.25, 0.50, and 1.0. All animals alive at the end
of 2 years are sacrificed. Values are chosen for the
parameters in the clonal two-stage model and for a mod-
el of general survival (19). These parameters are used
to determine the probability of survival and the prob-
ability of one or more malignant cells for each time and
for each dose group based upon the equations presented
earlier. Random numbers are used to determine random
death times and to decide if a malignancy is present at
that death time or not. After repeating this procedure
for 200 animals (50 per group for 4 groups), an animal
carcinogenicity experiment has been simulated with an
underlying time-dose-response relationship determined
by the clonal two-stage model and the survival model.

It has been suggested that the clonal two-stage model
applied to animal carcinogenesis data could be used to
make suggestions about the mechanism of action of some
carcinogens (13,15,16), Judging from Figures 3 and 4,
it seems unlikely that we would be able to differentiate
between additive initiation and promotion effects when
background response exists, Simulation experiments
provide a means to determine if the ability to differ-
entiate between various mechanisms is possible. Basi-
cally, data are generated from either a promotion-only
model or an initiation-only model. When fitting this mod-
el to simulated carcinogenicity data, it is possible to get
small promotional effects in the experimental range that
have no impact in the low-dose range and vice-versa for
initiation effects. To allow for this, the definition of an
initiator was modified to include all cases where w, dom-
inates the estimate of added risk in the low-dose range
even though -y, may be positive (see Appendix). Simi-
larly, the definition of a promoter was modified to allow
for the added risk estimate to be dominated by the
estimate of v, in the low-dose range. Two other out-
comes are possible in the simulations; no significantly
increased dose respense and significantly increased dose
response, which results in both w, and vy, affecting the
estimated low-dose risk.

Table 1 shows the percentage of times in 1000 sim-
ulated data sets that an initiator is correctly classified.
For this table, data were generated assuming an addi-
tive treatment effect on w, and assuming v, = 0. As the
slope of the dose-response curve increases (column 1),
our ability to correctly classify initiators improves.
However, it is clear from Table 1 that animal carcino-
genesis data does not provide enough information to
correctly classify initiators, with the possible exception
of very steep dose-response curves (w,/wy = 3). When
data are generated using an additive promotion effect,

Table 1. Classification of simulation outcomes for cases where
the chemical is an initiator and treatment effects are additive.

a table similar to Table 1 results, with promotion effects
being correctly classified about 60% of the time for the
steepest dose-response model considered. Thus, we find
that when treatment effects are additive, we cannot
differentiate between initiation effects and promotion
effects.

As mentioned earlier, one advantage of mechanistic
models is that some parameters may be available from
sources other than the cancer bioassay. Assuming these
parameters are for untreated animals, we see from
Tables 2 and 3 that knowledge of one of the spentaneous
model parameters does not improve our ability to dif-
ferentiate between initiation effects and promotion
effects.

When the background tumor rate is greater than zero
and treatment effects are independent, the ability to
differentiate between initiation effects and promotion
effects is not improved. In Table 4, we have generated
experiments for which there is only a promotional effect
{v12>0, w;3 = 0) using the independent treatment
effect model described above. It is clear that even when
the promotion effect is very strong, there is a chance
that a small initiation effect will dominate the low-dose
risk estimates. Again, as is illustrated by Table 5,
knowledge of one of the spontaneous parameters does
not noticeably improve the ability of animal earcino-
genesis data to differentiate between promoters and
initiators.

The examples presented above are for the cases

Table 2. Classification of simulation outcomes for cases where
the chemical is an initiator, treatment effects are additive, and
wy is known without error.

wifw, % Initiators % Promoters % Both % Considered
0 7.7 30.8 6l.5 2.6
0.5 15.8 31.5 52.7 12.7
1 23.2 32.7 44.1 36.7
2 41.9 26.9 31.2 82.3
3 56.4 20.9 22.7 98.3

Table 3. Classification of simulation outcomes for cases where
the chemical is an initiator, treatment effects are additive, and
~o is known without error.

w/w, % Initiators % Promoters % Both % Considered
0 11.1 25.9 63.0 2.7
0.5 19.2 29.6 51.2 12.5
1 26.3 33.1 40.6 35.7
2 41.5 26.8 31.7 82.2
3 b6.6 20.7 229 98.0

Table 4. Classification of simulation outcomes for cases where
the chemical is a promoter and treatment effects are
independent.

w/w, % Initiators % Promoters % Both % Considered Yiz % Initiators % Promoters % Both % Considered
0 29.7 16.2 54.1 3.7 0 82.4 11.8 5.8 1.7
0.5 31.5 26.2 42.3 13.0 10 7.8 16.7 8.5 1.8
1 26.7 33.3 40.0 36.3 12 77.6 22.5 0.0 4,0
2 40.0 26,7 33.3 82.1 14 51.8 47.0 1.2 32.8
3 56.8 20.7 22.5 98.0 17 37.4 60.0 2.6 99.9
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Table 5. Classification of simulation outcomes for cases where
the chemical is a promoter, treatment effects are independent,
and wy, is known without error,

Y1z % Initiators % Promoters % Both % Considered
0 - 889 11.1 0.0 1.8

10 78.9 21.1 0.0 1.9

12 68.6 28.6 2.8 35

14 - 48.9 50.2 0.9 2.7

17 35.6 62.6 1.8 100.0

where there exists a background tumor response. For
the case of very small or zero background response, the
ability to differentiate between initiators and promoters
improves considerably, approaching perfection for steep
dose-response curves. Note also that we are discussing
low-dose initiation versus low-dose promotion. Chang-
ing the definition of “low dose” and modifying the dei-
initions of “initiators” and “promoters” could obviously
alter the results of this analysis.

Finally, to show how random chance can lead to an
incorrect interpretation of bioassay results, consider the
estimated model shown in Figure 8. Curves with this
shape oceurred in 0.5 to 2% of the simulations. If one
were to estimate this model from animal carcinogenesis
data, one wotild conclude that the chemical is highly
mutagenic at low doses and highly cytotoxic to initiated
cells at high doses. However, this is simply the reali-
zation of a randem event from a model which in truth
looks nothing like this model. Thus, one should be very
careful in interpreting the results of curve fitting when
using a model as flexible as this one.

Summary

This manuscript has discussed two topies concerning
the use of mechanistic models in carcinogenic risk as-
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FiGURE 8. Dose-response at 104 weeks for a sample data set that
suggests the compound is an initiator and toxic to initiated cells.

sessment. The first problem concerns the incorporation
of treatment effects into the model. It was shown that
if treatment enters into the model in an additive fashion,
then the model will behave in a low-dose linear fashion.
If, on the other hand, background response is near zero
or treatment can be incorporated in an independent
fashion, it may be possible to have nonlinear low-dose
risk. The second issue concerns the ability of animal
carcinogenesis data to differentiate between alternative
mechanisms of carcinogenesis. In this case it was shown
that it is not possible to differentiate between mecha-
nisms for a very simple two-stage model.

The two-stage model considered in this study did not
allow for changes in the size of the susceptible normal
population. Hormonal changes in the animals could re-
sult in age-related changes in the size of the susceptible
population (20,21). Tt is also possible that the treatment
could be eytotoxic, reducing the size of the susceptible
population and/or increasing the mitotic rate in these
cells. It is possible that these mechanisms could play a
significant role in the formation of tumors. In general
it is believed these mechanisms would result in dose-
responge relationships that will not be low-dose linear.
As is the case above, this will depend upon whether
they are proportional effects and whether these effects
are independent or additive.

Despite the problems mentioned above, mechanistic
models serve an important role in carcinogenic risk as-
sessment. When one is extrapolating beyond the range
of the data, one would like to use a model that contains
the largest amount of information available on the pro-
cess being modeled. In addition, these models are very
useful for developing alternative designs and novel ex-
periments to address broader issues in cancer risk as-
sessment. They also provide a conceptual framework in
which to think about experimental results and help to
combine information from a variety of experiments.
However, one should be careful not to overinterpret the
parameters arrived at by fitting mechanistic models to
animal data.

APPENDIX

As mentioned in the text, the definitions of initiators
and promoters were modified for dealing with model
estimates from the simulations. For the purposes of risk
assessment it is too strict to require that estimated
parameters be identically zero before a classification can
be made. Instead, since low-dose risk assessment is the
goal of our analysis, the definition was modified so that
a simulated response was labeled as an initiator if the
dose-related mutation parameter (w,) dominated the
low-dose risk estimate. This was done by calculating
the four wvalues S;=S(104le, wy, oy, Yoo Yo,
S, = S(104le, wg, ; =0, vo, Y1), 8; = 5(104le, a, w5,
Yo Y1 = 0)7 SO = S(IO4|E> g, Wy = 05 Yo» Y1 = 0) for
e = 107°. The value of S, — S, estimates the added risk
of tumor from exposure to a dose e of the simulated
chemical. Since S, uses w, = 0, then S, — §, estimates
the added risk from exposure to a dose e when the dose-
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related mutation parameter is set to zerc {without esti-
mating the remaining parameters again). If S, — S, is
close in value to §; — 8, then one could conclude that
the promotion effect is very strong at low doses. Sim-
ilarly, Sq — S; estimates the added risk for a dose of €
using only the initiation effect. A simulated effect was
considered to be a low dose initiation effect if (S, — S,)/
(Sg - Sg) = (8¢ — S8, ~ S >0.10. That is, the rel-
ative initiation effect is 10% larger than the relative
promotion effect. Similarly, if this quantity was less
than —0.10, the simulated effect was assumed to be a
promotion effect. Sinee, for very low doses, small muta-
tion effects could dominate the added risk estimate, we
also congsidered e = 0.01. The results in Tables 1-3 are
for € = 107° and those in Tables 4 and 5 are for € = 0.01.
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